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Abstract. Our report devotes a 3D numerical model of the interaction of the

solar wind with the Solar Probe Plus (SPP) spacecraft. The SPP model includes 3

main parts, namely, a non-conducting heat shield, a support system, and cylindrical

section or spacecraft bus that contains the particle analysis devices and antenna. The

simulation was performed using 3D hybrid code which describes the proton dynamics by

the particle motions whereas the electrons are considered in a fluid approximation. One

observes an excitation of the low frequency Alfvén and whistler type wave directed by

the magnetic field with an amplitude about of (0.06-0.6)V/m. The compression waves

and the jumps in an electric field with an amplitude about of (0.15-0.7)V/m were also

observed. The wave amplitudes are comparable to or greater than previously estimated

max wave amplitudes that SPP is expected to measure. The results of our hybrid

simulation will be useful for understanding the plasma environment near the Solar Probe

Plus spacecraft. Future simulation will take into account the charging of the spacecraft,

the charge separation effects, an outgassing from heat shield, a photoionization and an

electron impact ionization effects near the spacecraft. We also need to perform a longer

simulation in order to receive a ”steady-state” solution with a formation of a plasma

wake in quasi-parallel interaction.

Numerical simulation studies; Key words: Solar wind; Alfvén waves, Whistlers,

Ionospheres; Atmospheres; Induced magnetospheres; Magnetic barrier; Satellites
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1. Introduction

The numerical simulation of the interaction of space plasma with spacecraft devices

plays a key-role in their design. The study of the excitation of waves near a rapidly

moving body has long history starting from the quasi-analytical approach (see e.g.

Alpert (1974) and the references thereby) to the recent electrostatic modeling. While

the electrostatic studies produced very important information concerning the charging

of spacecraft, plasma void and wake, the problem of excitation of the electromagnetic

waves upstream and downstream flow near spacecraft are great interest for onboard

measurement in the SW, magnetosphere and ionosphere. This is especially true for SPP

where new regimes of solar wind plasma are being explored. The simulation provides

the general characteristics of the plasma environment and the electromagnetic field

distribution near the probe and at it’s surface. The external surface of the ”SPP”

consists of a conducting part and an insulating part. It moves in the supersonic/subsonic

and superalfvénic/subalfvénic solar wind flow.

In the first approximation the plasma environment near the ”Solar Probe+” may be

similar to the plasma environment near the Moon with a weakly conducting surface. In

the case of a non-conducting model of the Moon the solar wind particles penetrate the

surface on the day-side of the Moon whereas on the night-side a plasma wake with the

low-density void is formed. On the day side of the Moon’s surface the plasma particles

are absorbed, and the perturbation region forms a thin boundary layer of thickness

δ ∼ c/ωpe ∝ 1 km at 1AU. (Neugebauer, 1960). On the night side the perturbation

region is bounded by a surface of weak perturbations forming a cone with half-apex
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angle sin2 θ = 1/M2
A + 1/M2

S (MA ∝ 8 and MS ∝ 8 are the Alfvén and sound Mach

numbers, VA ≈ 50 km/s, wth ≈ 50 km/s, U ≈ 400 km/s, and θ ≈ 10◦) (Whang, 1969;

Lipatov, 1976).

No bow shock or oblique Mach cone are formed. The perturbation of the magnetic

field inside the wake is determined by drift currents [Wang, 1968; Wang, 1969; Wang

and Ness, 1970; Lipatov 1976, Lipatov, 2002]. Kinetic instabilities may also play a role

in wake dynamics. Hybrid simulation of the interaction between supersonic plasma

flow and a weakly conducting body shows formation of a strong Mach cone outside the

plasma wake [Lipatov, Motschmann, et al., 2005].

2. Formulation of the Problem and Mathematical Model

2.1. Solar Wind Simulation Model

The interaction of solar wind particles with the ”SPP” is more complicated

because the gyroradius of the protons (for Maxwellian core of the velocity distribution

50 − 500 km) is much larger than the size of the spacecraft (2-3m). For energetic

component the ion gyroradius may be extremely large with respect to the spacecraft. So

the kinetic approximation for ions is an essential part of the mathematical model. The

electron gyroradius may vary in range from 2.5 × 102m at Earth orbit to much smaller

scale near Sun. Therefore, electrons need a fluid-kinetic approximation to study the

plasma environment along the ”Solar Probe+” trajectory.

We expect to study the plasma environment near the ”SPP” by various simulations;

e.g., (a) standard hybrid simulation (ion in kinetic approximation, electron in fluid
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approach) on the large scale; (b) fully kinetic implicit simulation with kinetic model

for electrons and ions (see e.g. Hewett and Langdon, 1987; Lipatov and Lobachev,

1996; Lipatov, 2002; Damiano, Sydora, Samson, 2003; Lipatov and Rankin, 2008)

incorporated in the large scale hybrid model. The last simulation will take into account

the charge separation near the surface of the spacecraft and finite electron gyroradius

effects. We will take into account the realistic distribution of the spacecraft surface’s

conductivity. Our simulation will serve as an expert system for design of the ”Solar

Probe Plus” spacecraft. The present model of the interaction of the solar wind with the

SPP does not take into account several effects in plasma environment near spacecraft.

Future simulation will take into account the charging of the spacecraft, the charge

separation effects, an outgassing from heat shield, a photoionization and an electron

impact ionization effects near the spacecraft.

To study the interaction of the solar wind with the SPP spacecraft we use a

quasi-neutral hybrid model for ions and electrons.

In our coordinate system the X axis is parallel to the solar wind velocity - U0, Z is

aligned with the equatorial plane, and Y = Z × X is perpendicular to equatorial plane

and anti-aligned with the E = −1
c
U × B electric field (electric field points upward).

In the hybrid simulations described here, the dynamics of upstream ions is

described in a kinetic approach, while the dynamics of the electrons is described in a

hydrodynamical approximation.

The single particle ion distribution function fi(t,x,v) has to fulfil the
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Vlasov/Boltzmann equation

∂

∂t
fi + v

∂

∂x
fi +

F

Mi

∂

∂v
fi = Fcoll, (1)

where F symbolizes forces due to electric and magnetic fields acting on the ions, Fcoll

is the collision term. In this paper we use the particle-mesh model for ion dynamics

instead of the Vlasov equation, Eq. ( 1).

The single ion particle motion is described by the equations (see, e.g. Eqs. (1) and

(14) from [Mankofsky, Sudan and Denavit, 1987]):

dri,l

dt
= vi,l;

dvi,l

dt
=

e

Mi

(

E +
vi,l ×B

c

)

−
meνie

Mieni

J. (2)

Here we assume that the charge state is Zi = 1 and that all ions have the same mass

Mi. Ui and J denote the charge-averaged velocity of all (incoming and pickup) ions and

the total current, Eq. (6). The subscript i denotes the ion population and the index l

is the macro-particle index. νie is collision frequencies between ions and electrons, that

may include Coulomb collisions and collisions due to particle-wave interaction. Note

that the collision rates used in Eq. (2) must depend on individual velocities of ions and

electrons. However, we use the effective resistivity η, η = σ−1 = me/(ne2τe), where

τe = ν−1
ie . The electrical conductivities may be estimated as

σ⊥ = σ1T
3/2
e , σ‖ = 1.92σ⊥, σ1 = 0.9 × 1013/((Λ/10)Zi) s−1 · eV−3/2, (3)

where Te denotes the electron temperature and Λ is the Coulomb logarithm (see,

e.g., pages 215-216 from [Braginskii, 1965]). For the typical solar wind parameters
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Te = 100 eV (electron temperature) and n0 = 104cm−3 (density) the electrical

conductivities are σ⊥ ≈ 4.7 × 1013 s−1 and σ‖ ≈ 9.2 × 1013 s−1.

In our simulation we use the low (much smaller than the real value) effective

conductivity to suppress ”shot” noise and for modeling Solar Probe Plus’s bus; hence,

we must keep the first collision term in the right hand side of Eq. (2).

In the nonradiative limit Ampère’s law is given by

4π

c
J = ∇× B; (4)

and the induction equation (Faraday’s law) by

1

c

∂B

∂t
+ ∇× E = 0. (5)

The total current is given by

J = Je + Ji; Ji = eniUi. (6)

We further assume quasi-neutrality

ne ≈ ni. (7)

The equation of motion of the electron fluid takes the form of standard generalized

Ohm’s law (e.g. Braginskii, 1965):

E =
1

enec
(Je × B) −

1

ene

∇pe +
me

e
νe,i

J

ne
−

m

e

d

dt
Ue, (8)

where pe = nme〈v
′2
e 〉/3 = nekBTe, and v′

e are the scalar electron pressure and the thermal

velocity of electrons, and the electron current is estimated from Eq. (6). The last term
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on the right side of Eq. (8) is the electron inertial term. At 5Rs we have n0 = 104 cm−3,

v′
e = 5000 km/s, and from Eq. (3) one gets σe,i = 0.4 × 1014 s−1 for background plasma

parameters.

Since we suppose that electron heating due to collisions with ions is very small,

the electron fluid is considered adiabatic. For simplicity we assume that the electron

pressure may be represented as:

pe ∝ n
5/3
i . (9)

We also assume that ne ≈ ni. Otherwise, we have to calculate the electron pressure from

heat balance for electrons (see, e.g., Braginski, 1965) taking into account the heat fluxes.

The ion kinetic approach allows us to take into account the effects of anisotropy of ion

pressure, the finite gyroradius effects, the asymmetry of plasma flow around the Solar

Probe Plus, and to estimate the particle flux at the surface of the spacecraft. Remember

that the fluid models which account only for the scalar (i.e., isotropic) ion pressure may

result in an extra-expansion of the ions along the magnetic field. Our plasma model

may support the kinetic ion cyclotron wave and electron fluid cyclotron waves.

2.2. SPP Spacecraft Model

Figure 1 shows a scheme of the SPP spacecraft, a system of coordinates and a

direction of the plasma flow and magnetic field. The SPP model includes 3 main parts,

namely, a non-conducting heat shield (1), a support system (2), and cylindrical section

or spacecraft bus (3) that contains the particle analysis devices and antenna. The heat

shield has the following geometrical parameters: the diameter, Dshield = 2.7m, and the
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thickness = 0.335m. The gap between the heat shield and cylindrical section is equal

1.188m. The cylindrical section or bus has a diameter equals 1.026m and a length

1.188m. We also take into account the effective resistivity of the Solar Probe+’s bus,

the heat shield and the gap between the heat shield and the spacecraft bus:

ρbus = (1−15)×10−3 ohm·m; ρshield = (3−15) ohm·m; ρgap = (3−15)×10−3 ohm·m

(10)

Our code solves equations (1) - (5), (6) - (9). Here we note that the gap has several

trusses to provide mechanical interface between bus and heat shield. If electrical

conductivity of trusses high enough that differential charging between spacecraft bus

and heat shield is low then the heat conduction from heat shield to spacecraft bus

maybe too high. We are not aware of the exact number at this time with regard to truss

electrical conductivity parameters.

Initially the computational domain contains only supersonic (subsonic) solar wind

flow with a homogeneous spatial distribution and a Maxwellian velocity distribution.

The magnetic field and electric fields are B = B0 and E = E0 = −U0 ×B0. Inside Solar

Probe spacecraft electromagnetic fields are E =0 and B = B0, and the bulk velocities of

ions and electrons are also equal to zero. In the cases examined here we choose spiral

angle of field θbu = 11◦ − 45◦.

Far upstream (x = −DX/2), the ion flux is assumed to have a Maxwellian

distribution,

f = n∞(πv2
th)

−3/2 exp

[

−
(v −U)2

2v2
th

]

, (11)
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where vth and U are the thermal and the bulk velocities of the solar wind plasma flow.

We have not included the importance of the field aligned strahl electrons which are

non-Maxwellian.

Far downstream, we use a buffer zone to provide the return of the particle with

negative value of the u velocity component. We also adopted Sommerfeld’s radiation

condition for the magnetic field. On the side boundaries (y = ±DY/2 and z = ±DZ/2),

unperturbed boundary conditions were imposed for incoming flow particles and the

electromagnetic field. At Solar Probe Plus’s surface the particles are reflected or

absorbed. There is no boundary condition for electromagnetic field, and we also use

our equations for the electromagnetic field, Eqs. (4-5) and 8 inside Solar Probe Plus

spacecraft but with internal conductivity and the bulk velocity that is calculated from

the particles. In this way the jump in the electric field is due to the variation of the

value of the conductivity and bulk velocity across the Solar Probe Plus bus’s surface.

Note that the position of the center of the bottom of the heat shield of Solar Probe Plus

is x = 0, y = 0, z = 0.

The three-dimensional computational domain has dimensions DX = 10L,

DY = 8L, and DZ = 8L, where L = Dshield/2 = 1.35m is a radius of heat shield.

We used mesh of 401 × 301 × 301 grid points, and 9 × 108 particles for protons for a

homogeneous mesh computation. The time step for the particle update, ∆tp satisfies the

condition vmax∆tp ≤ min(∆x, ∆y, ∆z)/16, whereas the time step for the electromagnetic

field time integration ∆tf satisfies the condition vmax∆tf ≤ min(∆x, ∆y, ∆z)/6400.

Note that the grid spacing are the following: ∆x = ∆y = ∆z = 0.036m.
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The relationship between dimensional (U , E, B, pe, n, T ) and dimensionless (U ′,

E ′, B′, p′e, n′, T ′) parameters may be expressed via the dimensional upstream values as

follows:

U = U′U0, E = E′B0U0/c, B = B′B0, pe = pe′pe0,

n = n′n0, T = T ′MiU
2
0 , (12)

whereas the dimensional time and distance may be expressed via the bulk velocity U0

and characteristic scale L = Dshield/2:

t = t′L/U0, x = x′L. (13)

The global physics in SPP’s environment is controlled by a set of dimensionless

independent parameters such as Alfvén Mach number MA, the ion and electron plasma

betas βi, βe, the electron/proton mass ratio m/Mp, diffusion lengths, and the ion

gyroradius ǫ = ρci/L. Here ρci = U0/(eB/Mic) = MAc/ωpi and the ion plasma frequency

ωpi =
√

4πn0e2/Mi. The actual value of the proton gyroradius is about (0.31 − 2.5) km

using the above formulas using the above formulas. The grid spacing has the value

∆x = L/50 = 0.036m. In order to study the ion kinetic effect, the ion gyroradius has to

be resolved on the grid.

2.3. Numerical Method

We employed a standard particle-in-cell (PIC) method with a homogeneous grid.

The time integration of the particle equations of motion uses a leapfrog scheme. The

time integration of the electromagnetic field equations uses an implicit finite difference
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scheme (see, e.g., Lipatov (2002)).

The finite difference approximation for the electric field and the electron velocity

equations may be produced by the following way:

d∇× (∇× En+θ) + AEn+θ + (∇× En+θ) × I

+g((∇× (∇×En+θ)) ×Bn) = Q, (14)

where

d =
m

M

ǫ2

M2
A

+ θnel
∗
d∆t, A = ne, g =

θ∆tǫ

M2
A

, (15)

I =
θǫ∆t

M2
A

(

M2
A

ǫ

Ns
∑

k=1

J
n+1/2
k −∇×Bn

)

, (16)

Q = −

(

Ns
∑

k=1

J
n+ 1

2

k −
ǫ

M2
A

∇× Bn

)

× Bn −
ǫβe

2M2
A

∇pe + nel
∗
d∇× Bn. (17)

and

Ue = Ui − ǫJ/(M2
Ane). (18)

In the case with adiabatic electrons one can split the total electric field into the

sum of inductive ( ~E1) and electrostatic ( ~E2) fields:

~E = ~E1 + ~E2, (19)

where ~E2 satisfies the condition

∇× ~E2 = 0. (20)

Then we can solve (14) for component ~E1 neglecting ∇pe. The electrostatic electric field

~E2 can be calculated from pe (Lipatov, 2002) because

~E2 = −
1

ene

∇pe. (21)
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Let us consider two meshes. The first mesh contains the nodes i, j, k, which are

located in the center of a cell. It is used for the computation of the density, current,

bulk velocity, electron pressure and inductive electric field. The second mesh contains

the nodes i ± 1/2, j ± 1/2, k ± 1/2, which are located at the corners of a cell. This

mesh is used for the computation of the magnetic field components, electrostatic field

and final electric field. Let us assume that ~J
n+1/2
i , ωpe and ni are known at time level

n + 1/2. Then, expressing ∇× ~En+θ
1 and ∇× (∇× ~En+θ

1 ) via central finite differences

at each cell center, one can obtain the following 3 × 3 matrix equation:

~L · ~En+θ
i,j,k = ~F

(

~En+θ
i±1,j±1,k±1

)

. (22)

Equation (18) may be solved by iteration. In each iteration the electric field on the right

side is given. The iteration continues until some convergence criterion is satisfied. At

the same time the electrostatic field ~E2 is calculated at from Eq. 21.

The second term on right side of Eq. 17 keeps a large parameter, so that a strong

shot noise in a density computation may cause a strong oscillation in the electric

field. Note that the first term (electron inertia) on the left side of the Eq. 14 has a

large coefficient so that this term may play very important role in damping of the low

frequency waves. In this report we assume that m/Mp = 0 and we neglect the electron

inertia term (first term on the left side) in Eq. 14.

We used different time steps for particle and field pushing (subcycling). The code

was optimized for parallel computation using OpenMP parallel environment. However,

the staff from the Computational and Information Sciences and Technology Office
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(NASA GSFC) is working on the conversion the our code to the MPI environment.

That may allow us to use a distributed memory parallel computer system for our

computation.

Since the gyroradius must be resolved, a grid point spacing of less than 1 gyroradius

is required in order to avoid numerical dispersion and dissipation. On the other hand,

good statistics are required, therefore a sufficiently large number of particles per cell

have to be used (i.e., to obtain low “shot” noise, which manifests itself as fluctuations

in the numerical plasma parameters due to a small number of particles per cell).

A multiscale simulation will be conducted using adaptive mesh and particle

refinement techniques with composite grids. This code exploits a splitting-of-particles

procedure to keep a low level of “shot” noise on the finer mesh. At the end of the global

time step we use the synchronization for the values of the electromagnetic field on coarse

and finer meshes. A.S. Lipatov has developed a version of the Complex Particle Kinetic

method (see, Hewett, 2003) [in collaboration with D.W. Hewett (LLNL) and M.R.

Combi (Univ. of Michigan)] for the case of multiple plasma beams (inter-penetrating

flow) which allows us a reduction in computational resources by factors of 100 - 1000 in

comparison with standard PIC simulation (Lipatov, 2008a). These codes were optimized

for parallel computation using MPI and OMP.

3. Results of the Simulation

To study the interaction of the solar wind with the SP+ we use the following

sets of the solar wind plasma parameters: βi = 0.1; βe = 0.000125 − 0.00125 − 0.1;
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magnetic field, B0 = 1500 − 6250 nT; bulk velocity U0 = 400 − 200 km/s, density

nSW = 5 × 103 − 104 cm−3, Alfvén Mach number MA = 1.2 − 10 and θbu = 11◦ − 45◦.

Table 2 shows the all parameters that correspond the case: (a), (b) and (c). These

parameters correspond to the values of the motional electric field E0 = U0B0 ≈ 1.24V/m

for r = 5Rs and E0 ≈ 0.3V/m for r = 9.5Rs. The higher values of the magnetic field

and density correspond to the distance from the Sun of about 5Rs, whereas the lower

values correspond to the distance of 9.5 Rs. We present here the results of simulation

for the first case. The time step for electromagnetic field update is 48 times smaller in a

quasi-parallel case than it the time step in an oblique case. In the present simulation, we

use a reduced value for the electron plasma beta, βe = 0.001 to reduced the oscillation

in the polarization electric field because of the large value of the dimensional proton

gyroradius, ǫ = ρp/L = 1840 − 230, see the equations (13-17).

3.1. Quasi-parallel Interaction of the Solar Wind with Solar Probe+

Let us consider first the global picture of the interaction of the solar wind with

Solar Probe+ in the quasi-parallel case, θbu = 11◦. We have performed the simulation

of this case only for a short time because of the small time step that needs to be done

for numerical stability. One simulation takes around 1 month for computing with 16

processors on the ”shared memory” Palm/Explore machine. Figure 2 shows 2D cut

for proton density in the y − x and z − x planes. We see the picture of the solar

wind flow around the spacecraft. Behind the heat shield a density profile forms a cone

due to expansion of the external plasma into the gap between the heat shield and the
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spacecraft bus. Behind the spacecraft bus there is no lunar-type plasma wake due to

low value of the Mach number, MA = 1.2 − 1.5, and high values of the plasma betas,

βp = 0.1. βe = 0.000125 (case a, Table 2). Possibly, the plasma wake may form in longer

simulations.

In this case the current closure near a spacecraft is very complicated and is directed

by the external magnetic field. Figures 3, 5 and 7 show the 2D cuts for the electric field

at t = 0.014Tce. Note that Tce is the electron gyroperiod. In upstream one sees the

linear perturbation in the electric field in form of whistler/Alfvén waves in upstream

and downstream regions at the beginning of simulation t = 0.014Tce. The value of

perturbation in the electric field is about of δE ≈ 0.02E0, E0 ≈ 1.24V/m).

Figures 4, 6 and 8 show 1-D cuts for the electric field profile along the x, y and z

axis through the point x = 1.5L, y = 0 and z = 0.

Far from the spacecraft, the value of perturbation in the electric field component,

Ex, is about of δEx ≈ (0.001 − 0.005)E0 in the y- direction, whereas δEx ≈ 0.01E0

in the z- direction. The value of perturbation in the electric field components, Ey

and Ez, is about δEy ≈ 0.5E0 (whistler type waves) in the x- direction (upstream

and downstream), and δEy ≈ 0.01E0 in the y- direction, and δEy ≈ 0.01E0 in the z-

direction. The value of perturbation in the electric field component, Ez, is about of

δEz ≈ 0.05E0 in the x- direction, δEz ≈ 0.05E0 in the y- direction, and δEz ≈ 0.1E0 in

the z- direction.

Near spacecraft, the Ex profile has a jump, δEx = −1000E0 behind the heat shield.

Near spacecraft one sees an excitation of strong Alfvén waves with an amplitude ,
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δEx ≈ 0.005E0 along y axis, and δEx ≈ (0.02 − 0.15)E0 along the z axis. We also see a

jump in Ey component of the electric field, δEy ≈ 0.1E0 in y direction and δEy ≈ 0.05E0

in z direction. The components Ey and Ez have a jump, δE ≈ (0.02− 0.5)E0 in y and z

directions.

Figures 9, 10 and 11 demonstrate 2D cuts for the magnetic field. At the front

of the heat shield a formation of the magnetic field barrier is observed. At the side

parts of the computational domain compression waves were observed in simulations.

The value of perturbation in the magnetic field is about of δB ≈ 0.02B0 (≈ 120 nT for

B0 ≈ 6200 nT.).

Let us consider the result of simulation at the later time, t = 0.29Tce

(t = 0.04Ttransit), where Ttransit is the time for particle transit from the left boundary to

the right boundary of the computational domain. Figure 12 shows a 2D cuts for proton

density in the y − x and z − x planes. The perturbation in the electromagnetic field

reaches the saturation level, since the density distribution showed no change during the

simulation.

Figure 13, 15 and 17 show the 2D cuts for the electric field at later time

t = 0.29Tce. Since the density distribution had not changed during the simulation and

the perturbation in the electromagnetic field reaches the saturation level (left hanging).

We do not see any strong transverse perturbation in the electric fields in the upstream

region, but we do see large perturbations in the downstream region. The value of these

perturbations is about of δE ≈ 1.0E0 ≈ 1.24V/m.

Figures 14, 16 and 18 shows 1-D cuts for the electric field profile along the x, y and
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z axis through the point x = 1.5L, y = 0 and z = 0.

Far from the spacecraft in the downstream region, the value of perturbation in the

electric field component, Ex, is about of δEx ≈ 0.005E0 in the y- direction, whereas

δEx ≈ 0.01E0 in the z- direction. The value of perturbation in the electric field

components, Ey and Ez, is about of δE ≈ 2.0E0 (whistler type waves) in the x- direction

(downstream), Fig. 14, and δEy ≈ 0.05E0 in the y- direction, and δEy ≈ 0.03E0 in the

z- direction, Fig. 16. The value of perturbation in the electric field component, Ez,

is about of δEz ≈ 0.05E0 in the x- direction, δEz ≈ 0.025E0 in the y- direction, and

δEz ≈ 0.025E0 in the z- direction, Fig. 18.

Near spacecraft, the Ex profile has a jump, δEx = 250E0 behind the cylindrical

section (conducting bus). We also see a jump in Ey component of the electric field,

δEy ≈ (0.5 − 0.75)E0 in y direction and δEy ≈ 0.2E0 in z direction. The component Ez

has a jump, δE ≈ (0.15 − 0.2)E0 in y and z directions.

Figures 19, 20 and 21 demonstrate 2D cuts for the magnetic field. At time,

t = 0.29Tce (t = 0.04Ttransit), we do not observe any magnetic field barrier near the

heat shield. At the side parts of the computational domain compression waves were

observed in the simulations. The value of perturbation in the magnetic field is about of

δB ≈ 0.02B0.

Let us consider the results of the simulation with higher value of βe = 0.025 (case

b, Table 2). Figure 22 shows a 2D cuts for proton density in the y − x and z − x

planes. We see the picture of the solar wind flow around the spacecraft. Behind the

heat shield a density profile forms a cone due to expansion of the external plasma into
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the gap between the heat shield and the spacecraft bus. Behind the spacecraft there is

no lunar-type plasma wake due to low value of the Mach number, MA = 1.2 − 1.5.

The general picture of the interaction of the solar wind with spacecraft is very

close to the picture that was described above. Figure 23, 25 and 27 show the 2D cuts

for the electric field at t = 0.014Tce. Figures 24, 26 and 28 shows 1-D cuts for the

electric field profile along the x, y and z axis through the point x = 1.5L, y = 0 and

z = 0. In upstream and downstream we observe the linear perturbation in the electric

filed - whistler/Alfv’en waves. The value of perturbation in the electric field (Ey, Ez)

in upstream and downstream is about of δE ≈ 0.4E0 (whistler type waves) in the x-

direction, and the wavelength much larger than in case with βe = 0.000125.

Far from the spacecraft, the value of perturbation in the electric field component,

Ex, is about of δEx ≈ 0.002E0 in the y- direction, whereas δEx ≈ 0.005E0 in the z-

direction. In other directions we observe perturbation - δEy ≈ 0.01E0 in the y- direction,

and δEy ≈ 0.01E0 in the z- direction. The value of perturbation in the electric field

component, Ez, is about of δEz ≈ 0.05E0 in the x- direction, δEz ≈ 0.01E0 in the y-

direction, and δEz ≈ 0.01E0 in the z- direction.

Near spacecraft, the Ex profile has a jump, δEx = −20E0 before the heat shield

and δEx = 30E0 behind the cylindrical section. Near spacecraft we see an excitation of

strong oblique Alfvén (magnetosonic) waves with an amplitude , δEx ≈ (0.005− 0.01)E0

along y axis, and δEx ≈ (0.02 − 0.15)E0 along the z axis. We also see a jump in Ey

component of the electric field, δEy ≈ 20E0 in y direction and δEy ≈ 0.05E0 in z

direction. The components Ez has a jump, δE ≈ 0.04E0 in the y and δE ≈ 20E0 in the



20

z directions.

Figures 29, 30 and 31 demonstrate 2D cuts for a magnetic field. At the front of the

screen a formation of a magnetic field barrier was observed. At the side parts of the

computational domain compression waves were observed in simulations. The value of

perturbation in the magnetic field is about of δB ≈ 0.02B0.

Let us consider now the result of simulation with βe = 0.025 at the later time,

t = 0.03Tce (t = 0.01Ttransit), where Ttransit is the time for particle transit from the

left boundary to the right boundary of the computational domain. Figure 32 shows

a 2D cuts for proton density in the y − x and z − x planes. The perturbation in the

electromagnetic field reaches the saturation level, since the density distribution has not

changed during the simulation.

Figure 33, 35 and 37 show the 2D cuts for the electric field at t = 0.03Tce. Since

the density distribution had not changed during the simulation the perturbation in the

electromagnetic field reached the saturation levels. Figures 34, 36 and 38 shows 1-D cuts

for the electric field profile along the x, y and z axis through the point x = 1.5L, y = 0

and z = 0.

Far from the spacecraft, the value of perturbation in the electric field component,

Ex, is about of δEx ≈ (0.01 − 0.015)E0 in the y- direction, whereas δEx ≈ 0.01E0 in

the z- direction. The value of perturbation in the electric field components, Ey and

Ez, is about of δEy ≈ 0.02E0 (whistler/Alfv’en waves) in the x- direction (upstream

and downstream), and δEy ≈ 0.01E0 in the y- direction, and δEy ≈ 0.01E0 in the z-

direction. The value of perturbation in the electric field component, Ez, is about of
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δEz ≈ 0.05E0 in the x- direction, δEz ≈ 0.05E0 in the y- direction, and δEz ≈ 0.1E0 in

the z- direction.

Near spacecraft, the Ex profile has a jump, δEx = −1000E0 behind the heat shield.

Near spacecraft we see an excitation of a strong Alfvén waves with an amplitude ,

δEx ≈ 0.005E0 along y axis, and δEx ≈ (0.02 − 0.15)E0 along the z axis. We also see a

jump in Ey component of the electric field, δEy ≈ 20E0 in y direction and δEy ≈ 0.05E0

in z direction. The component Ez has a jump, δE ≈ (0.02−20.)E0 in y and z directions.

Figures 39, 40 and 41 demonstrate 2D cuts for the magnetic field. At the front

of the heat shield a formation of the magnetic field barrier or build up was observed.

At the side parts of the computational domain a compression waves were observed in

simulations. The value of perturbation in the magnetic field is about of δB ≈ 0.02B0.

3.2. Oblique Interaction of the Solar Wind with Solar Probe Plus

Let us consider the interaction of the solar wind with Solar Probe Plus in the

oblique case, θbu = 45◦, and MA = 2 at time, t = 1.875Ttransit, where Ttransit is the time

for particle transit from the left boundary to the right boundary of the computational

domain (case c, Table 2). The simulation demonstrates the formation of the plasma

wake. A strong perturbation in the plasma density along the wake was observed,

Fig. 42. The density profile is a little bit disturbed near the side boundaries. One may

see that SP+ bus is located inside the low plasma density cavern. This means particle

instrument in wake may see nothing. Figures 43-45 and 46-45 show the distribution of

the electric and magnetic fields, respectively. The asymmetry of the distributions in E
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and B appears to be caused by the finite gyroradius effects of incoming protons. A weak

perturbation of the magnetic field was observed near the SP+ spacecraft: compression

of the upstream magnetic field and decompression in the plasma wake, Fig. 48.

One can see the asymmetry in the distribution relative to the x-axis due to the

angle between the bulk velocity and the upstream magnetic field and to the y-axis

due to effects of the finite ion gyroradius, Fig. 47. The value of perturbation in the

magnetic field is about of δB ≈ 0.02B0, Fig. 48. Table 3 accumulates the values of the

perturbation in the electric and magnetic field and the jumps in the normal component

of the electric field at the surface of the spacecraft bus. Note that strong jumps at the

bus surface may be due to the specific boundary condition and the future computations

may reduce these values.

4. Conclusions

3D hybrid simulations of the interaction of the solar wind plasma with Solar Probe

Plus, have demonstrated several new features:

• In the quasi-parallel case the current closure near a spacecraft is very complicated

and is directed by the external magnetic field. At the front of the heat shield a

formation of the magnetic field barrier was observed whereas a formation of the

strong whistler/Alfvén waves were observed in both upstream and downstream

regions. At the side parts of the computational domain compression waves were

observed in simulations. The values of the electric field oscillation near the
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spacecraft bus may be the same order as the maximum of expected electric field

in an antenna (see, Table 1 from Murphy et al, 2008).

• In case of the oblique magnetic field θbw = 45◦ the magnetic barrier is formed at

the front of the heat shield.

• The simulations were performed for the distance r = 4.5 Rs because of a

numerical limitation for convergence in the iterations of the electric field equation

(Lipatov,2002). For distance r = 9.5 Rs one needs to design another algorithm for

solving the electric field equation, Eq. 8. We are now trying to use the implicit

”splitting of operator” method to solve the generalized Ohm’s law equation, Eq. 8.

• Our computations were performed only for the case βe = 0.00125 − 0.025 that is

smaller at least by factor of 4 than realistic values. For higher value of βe one

needs computation with significantly larger number of the macro-particles. It may

be possible with the use of more than 320 processors on ”SGI-Columbia” parallel

computer system (NASA Ames Center) with MPI environment to achieve a good

scalability.

• All simulations for θbu = 11◦ were performed for a short period physical time

because the present code needs a lot of time steps to compute the electric field.

A more effective algorithm needs to be designed for longer period of the physical

time. It will be important for an investigation of the low plasma density cavern

formation around the SP+ bus.
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• Simulated electric field perturbations are comparable to or exceed maximum

electric field one expects for the SP+ spacecraft. Therefore, a wake design of SP+

electric field plasma-wave antenna may not be a viable option for SP+.

Future work that is still needed:

Hybrid simulations

• Simulation with higher value of βe = 0.1, higher value of the solar wind velocity

U0 ≈ 400 − 800 km/s, and lower value of the magnetic field B0 ≈ 1500 nT.

• Simulations with various boundary condition on the spacecraft bus and trusses

configuration;

• Simulation with much higher space resolution and a number of macro-particles to

reduces a ”shot” noise in density and polarization electric field;

• Longer simulations in order to receive a ”steady-state” solution with a formation

of a plasma wake in quasi-parallel interaction.

The results of these simulations will be included in the final Report.

Full kinetic simulations

• Simulation that will take into account the charging of the spacecraft, the charge

separation effects, an outgassing from heat shield, a photoionization and an

electron impact ionization effects near the spacecraft.
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Table 1. Important values of the electromagnetic field in an antenna from

”Thermal Design Consideration for the Solar Probe Plus Electric Field An-

tenna by Murphy et al., Feb. 2008”.

4Rs 12Rs 20Rs

U × B 12 V/m 2.5 V/m 0.5 V/m

Emax, DC 1 V/m 0.1 V/m 0.1 V/m

Emax, 100kHz 10−3 V/m Hz−1/4 10−4 V/m Hz−1/4 10−4 V/m Hz−1/4

V Noise at 100 kHz 10−6 V/Hz−1/4 3 × 10−7 V/Hz−1/4 2 × 10−7 V/Hz−1/4
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Table 2. Solar Wind Parameters for Modeling.

Case U0 nSW B0 θbu MA βp βe

a 200 km/s 104 6250 nT 11◦ 1.2 0.1 0.000125

b 200 km/s 104 6250 nT 11◦ 1.2 0.1 0.025

c 200 km/s 104 6250 nT 45◦ 2.0 0.1 0.000125
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Table 3. Electromagnetic Field Perturbation in Plasma Environment near SP+.

Case t(Tce) δEx(1.24 V/m) δEy(1.24 V/m) δEz(1.24 V/m) δBx(6250 nT) δBy(6250 nT) δBz(6250 nT) En at bus

a 0.014 0.005-0.01 0.01-0.5 0.05-0.1 0.001 0.0002 0.001 1000

a 0.29 0.005-0.01 0.05-1.0 0.05-0.2 0.005 0.01 0.1 1200

b 0.014 0.002-0.01 0.05 0.05 0.001 0.0002 0.001 30

b 0.03 0.02-0.04 0.05 0.02-0.2 0.005 0.01 0.04 30

c 13.6 0.2-0.5 0.25-0.5 0.2-2.5 0.05-1 0.05-2 0.05- 1.4 5.0



Figure 1. Scheme of the interaction of the solar wind with SP+. The spiral magnetic

field is inside the x-z plane. (1) a heat shield; (2) a support system; (3) a spacecraft bus.
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Figure 3. Electric field component Ex(1.24V/m) in the y-x (z = 0) and z-x (y = 0)

planes. U0 = 200 km/s, MA = 1.5, B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe =

0.000125, θbu = 11o. Linear perturbations at the beginning of simulation t = 0.014 Tce
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Figure 5. Electric field component Ey(1.24V/m) in the y-x (z = 0) and z-x (y = 0)

planes. U0 = 200 km/s, MA = 1.5, B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe =

0.000125, θbu = 11o. Linear perturbations at the beginning of simulation t = 0.014 Tce
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Figure 7. Electric field component Ez(1.24 /m) in the y-x (z = 0) and z-x (y = 0) planes.

U0 = 200 km/s, MA = 1.5, B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.000125,

θbu = 11o. Linear perturbations at the beginning of simulation t = 0.014 Tce
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at the beginning of simulation t = 0.014 Tce
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Figure 13. Electric field component Ex(1.24V/m) in the y-x (z = 0) and z-x

(y = 0) planes. U0 = 200 km/s, MA = 1.5, B0 = 6250 nT, nSW = 104 cm−3,

βp = 0.1, βe = 0.000125, θbu = 11o. Nonlinear saturation of the perturbations at

t = 0.29 Tce(0.04 Ttransit)
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Figure 15. Electric field component Ey(1.24V/m) in the y-x (z = 0) and z-x

(y = 0) planes. U0 = 200 km/s, MA = 1.5, B0 = 6250 nT, nSW = 104 cm−3,

βp = 0.1, βe = 0.000125, θbu = 11o. Nonlinear saturation of the perturbations at

t = 0.29 Tce(0.04 Ttransit)
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middle: x = 1.5, z = 0; bottom: x = 1.5, y = 0). U0 = 200 km/s, MA = 1.5,

B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.000125, θbu = 11o. Nonlinear saturation
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Figure 17. Electric field component Ez(1.24V/m) in the y-x (z = 0) and z-x

(y = 0) planes. U0 = 200 km/s, MA = 1.5, B0 = 6250 nT, nSW = 104 cm−3,

βp = 0.1, βe = 0.000125, θbu = 11o. Nonlinear saturation of the perturbations at

t = 0.29 Tce(0.04 Ttransit)
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Figure 18. 1-D cuts for the electric field component Ez(1.24V/m) (top: y = 0, z = 0;

middle: x = 1.5, z = 0; bottom: x = 1.5, y = 0). U0 = 200 km/s, MA = 1.5,

B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.000125, θbu = 11o. Nonlinear saturation

of the perturbations at t = 0.29 Tce(0.04 Ttransit)
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Figure 19. Magnetic field component Bx(6250 nT) in the y-x (z = 0) and z-x

(y = 0) planes. U0 = 200 km/s, MA = 1.5, B0 = 6250 nT, nSW = 104 cm−3,

βp = 0.1, βe = 0.000125, θbu = 11o. Nonlinear saturation of the perturbations at

t = 0.29 Tce(0.04 Ttransit)
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Figure 20. Magnetic field component By(6250 nT) in the y-x (z = 0) and z-x

(y = 0) planes. U0 = 200 km/s, MA = 1.5, B0 = 6250 nT, nSW = 104 cm−3,

βp = 0.1, βe = 0.000125, θbu = 11o. Nonlinear saturation of the perturbations at

t = 0.29 Tce(0.04 Ttransit)
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Figure 21. Magnetic field component Bz(6250 nT) in the y-x (z = 0) and z-x

(y = 0) planes. U0 = 200 km/s, MA = 1.5, B0 = 6250 nT, nSW = 104 cm−3,

βp = 0.1, βe = 0.000125, θbu = 11o. Nonlinear saturation of the perturbations at

t = 0.29 Tce(0.04 Ttransit)
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Figure 22. Solar wind ion density in the y-x (z = 0) and z-x (y = 0) planes. U0 =

200 km/s, MA = 1.5, B0 = 6250 nT, E0 = U0B0 = 1.24V/m, nSW = 104 cm−3, βp = 0.1,

βe = 0.025, θbu = 11o. Linear perturbations at the beginning of simulation t = 0.014 Tce
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Figure 23. Electric field component Ex(1.24V/m) in the y-x (z = 0) and z-x (y = 0)

planes. W = 200 km/s, MA = 1.5, B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.025,

θbu = 11o. Linear perturbations at the beginning of simulation t = 0.014 Tce
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Figure 24. 1-D cuts for the electric field component Ex(1.24V/m) (top: y = 0, z = 0;

middle: x = 1.5, z = 0; bottom: x = 1.5, y = 0). U0 = 200 km/s, MA = 1.5,

B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.025, θbu = 11o. Linear perturbations

at the beginning of simulation t = 0.014 Tce
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Figure 25. Electric field component Ey(1.24V/m) in the y-x (z = 0) and z-x (y = 0)

planes. U0 = 200 km/s, MA = 1.5, B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.025,

θbu = 11o. Linear perturbations at the beginning of simulation t = 0.014 Tce



Ey

-4 -2 0 2 4
X/L

-0.05
0.00
0.05
0.10
0.15
0.20
0.25

E
y

Ey

-4 -2 0 2 4
Y/L

-30
-20
-10

0
10
20
30

E
y

Ey

-4 -2 0 2 4
Z/L

-0.05
0.00
0.05
0.10
0.15
0.20
0.25

E
y

Figure 26. 1-D cuts for the electric field component Ey(1.24V/m) (top: y = 0, z = 0;

middle: x = 1.5, z = 0; bottom: x = 1.5, y = 0). U0 = 200 km/s, MA = 1.5,

B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.025, θbu = 11o. Linear perturbations

at the beginning of simulation t = 0.014 Tce
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Figure 27. Electric field component Ez(1.24V/m) in the y-x (z = 0) and z-x (y = 0)

planes. U0 = 200 km/s, MA = 1.5, B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.025,

θbu = 11o. Linear perturbations at the beginning of simulation t = 0.014 Tce
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Figure 28. 1-D cuts for the electric field component Ez(1.24V/m) (top: y = 0, z = 0;

middle: x = 1.5, z = 0; bottom: x = 1.5, y = 0). U0 = 200 km/s, MA = 1.5,

B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.025, θbu = 11o. Linear perturbations

at the beginning of simulation t = 0.014 Tce
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Figure 29. Magnetic field component Bx(6250 nT) in the y-x (z = 0) and z-x (y = 0)

planes. U0 = 200 km/s, MA = 1.5, B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.025,

θbu = 11o. Linear perturbations at the beginning of simulation t = 0.014 Tce
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Figure 30. Magnetic field component By(6250 nT) in the y-x (z = 0) and z-x (y = 0)

planes. U0 = 200 km/s, MA = 1.5, B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.025,

θbu = 11o. Linear perturbations at the beginning of simulation t = 0.014 Tce
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Figure 31. Magnetic field component Bz(6250 nT) in the y-x (z = 0) and z-x (y = 0)

planes. U0 = 200 km/s, MA = 1.5, B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.025,

θbu = 11o. Linear perturbations at the beginning of simulation t = 0.014 Tce
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Figure 32. Solar wind ion density in the y-x (z = 0) and z-x (y = 0) planes. U0 =

200 km/s, MA = 1.5, B0 = 6250 nT, E0 = U0B0 = 1.24V/m, nSW = 104 cm−3, βp = 0.1,

βe = 0.025, θbu = 11o. Nonlinear saturation of the perturbations at t = 0.03 Tce
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Figure 33. Electric field component Ex(1.24V/m) in the y-x (z = 0) and z-x (y = 0)

planes. U0 = 200 km/s, MA = 1.5, B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.025,

θbu = 11o. Nonlinear saturation of the perturbations at t = 0.03 Tce



Ex

-4 -2 0 2 4
X/L

-20
-10

0
10
20
30
40

E
x

Ex

-4 -2 0 2 4
Y/L

-0.04

-0.02

0.00

0.02

0.04

E
x

Ex

-4 -2 0 2 4
Z/L

-0.04
-0.02

0.00

0.02

0.04

0.06

E
x

Figure 34. 1-D cuts for the electric field component Ex(1.24V/m) (top: y = 0, z = 0;

middle: x = 1.5, z = 0; bottom: x = 1.5, y = 0). U0 = 200 km/s, MA = 1.5,

B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.025, θbu = 11o. Nonlinear saturation of

the perturbations at t = 0.03 Tce
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Figure 35. Electric field component Ey(1.24V/m) in the y-x (z = 0) and z-x (y = 0)

planes. U0 = 200 km/s, MA = 1.5, B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.025,

θbu = 11o. Nonlinear saturation of the perturbations at t = 0.03 Tce
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Figure 36. 1-D cuts for the electric field component Ey(1.24V/m) (top: y = 0, z = 0;

middle: x = 1.5, z = 0; bottom: x = 1.5, y = 0). U0 = 200 km/s, MA = 1.5,

B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.025, θbu = 11o. Nonlinear saturation of

the perturbations at t = 0.03 Tce
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Figure 37. Electric field component Ez(1.24V/m) in the y-x (z = 0) and z-x (y = 0)

planes. U0 = 200 km/s, MA = 1.5, B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.025,

θbu = 11o. Nonlinear saturation of the perturbations at t = 0.03 Tce
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Figure 38. 1-D cuts for the electric field component Ez(1.24V/m) (top: y = 0, z = 0;

middle: x = 1.5, z = 0; bottom: x = 1.5, y = 0). U0 = 200 km/s, MA = 1.5,

B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.025, θbu = 11o. Nonlinear saturation of

the perturbations at t = 0.03 Tce
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planes. U0 = 200 km/s, MA = 1.5, B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.025,

θbu = 11o. Nonlinear saturation of the perturbations at t = 0.03 Tce
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planes. U0 = 200 km/s, MA = 1.5, B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.025,

θbu = 11o. Nonlinear saturation of the perturbations at t = 0.03 Tce
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planes. U0 = 200 km/s, MA = 1.5, B0 = 6250 nT, nW = 104 cm−3, βp = 0.1, βe = 0.025,

θbu = 11o. Nonlinear saturation of the perturbations at t = 0.03 Tce
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Figure 42. Solar wind ion density in the y-x (z = 0) and z-x (y = 0) planes. U0 =

200 km/s, MA = 2, B0 = 6250 nT, E0 = U0B0 = 1.24V/m, nSW = 104 cm−3, βp = 0.1,

βe = 0.0125, θbu = 45o, t = 13.6 Tce(1.875 Ttransit.)
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Figure 43. Electric field component Ex(1.24V/m) in the y-x (z = 0) and z-x (y = 0)

planes. U0 = 200 km/s, MA = 2, B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.0125,

θbu = 45o, t = 13.6 Tce(1.875 Ttransit.)
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Figure 44. Electric field component Ey(1.24V/m) in the y-x (z = 0) and z-x (y = 0)

planes. U0 = 200 km/s, MA = 2, B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.0125,

θbu = 45o, t = 13.6 Tce(1.875 Ttransit.)
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Figure 45. Electric field component Ez(1.24V/m) in the y-x (z = 0) and z-x (y = 0)

planes. U0 = 200 km/s, MA = 2, B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.0125,

θbu = 45o, t = 13.6 Tce(1.875 Ttransit.)
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Figure 46. Magnetic field component Bx in the y-x (z = 0) and z-x (y = 0) planes.

U0 = 200 km/s, MA = 2, B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.0125,

θbu = 45o, t = 13.6 Tce(1.875 Ttransit.)
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Figure 47. Magnetic field component By(6250 nT) in the y-x (z = 0) and z-x (y = 0)

planes. U0 = 200 km/s, MA = 2, B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.0125,

θbu = 45o, t = 13.6 Tce(1.875 Ttransit.)
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Figure 48. Magnetic field component Bz(6250 nT) in the y-x (z = 0) and z-x (y = 0)

planes. U0 = 200 km/s, MA = 2, B0 = 6250 nT, nSW = 104 cm−3, βp = 0.1, βe = 0.0125,

θbu = 45o, t = 13.6 Tce(1.875 Ttransit.)
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